
DIFFERENTIABILITY OF QUERMASSINTEGRALS: A
CLASSIFICATION OF CONVEX BODIES
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Abstract. In this paper we characterize the convex bodies in Rn whose quer-
massintegrals satisfy certain differentiability properties, which answers a ques-
tion posed by Bol in 1943 for the 3-dimensional space. This result will have
unexpected consequences on the behavior of the roots of the Steiner polyno-
mial: we prove that there exist many convex bodies in Rn, for n ≥ 3, not
satisfying the inradius condition in Teissier’s problem on the geometric prop-
erties of the roots of the Steiner polynomial.

1. Introduction and main results

Let Kn be the set of all convex bodies, i.e., compact convex sets in the Euclidean
space Rn, and let Kn

0 be the subset of Kn consisting of all convex bodies with non-
empty interior. A convex body K is called strictly convex if its boundary bd K does
not contain a segment, and regular if all its boundary points are regular, i.e., the
supporting hyperplane to K at any x ∈ bd K is unique. Moreover, let Bn be the
n-dimensional unit ball and Sn−1 the (n − 1)-dimensional unit sphere of Rn. The
volume of a set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is denoted by
V(M), its closure by cl M , its convex hull by conv M and its affine hull by aff M .

For two convex bodies K ∈ Kn and E ∈ Kn
0 and a non-negative real number

λ the outer parallel body of K (relative to E) at distance λ is the Minkowski sum
K + λE. For 0 ≤ λ ≤ r(K;E) the inner parallel body of K (relative to E) at
distance λ is defined as the Minkowski difference

K ∼ λE = {x ∈ Rn : λE + x ⊂ K},
where the relative inradius r(K; E) of K with respect to E is given by

r(K; E) = sup{r : ∃x ∈ Rn with x + r E ⊂ K}.
When the gauge body E = Bn, then r(K; Bn) is the classical inradius (see [2, p. 59]).
Clearly if λ = 0 the original body K is obtained. Notice that K ∼ r(K; E)E is the
set of relative incenters of K, usually called kernel of K with respect to E. The
dimension of the kernel is always strictly less than n (see [2, p. 59]). Inner parallel
bodies and their properties have been studied in [1, 3, 4, 8, 9, 13, 14, 15, 17, 18].
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From now on we will write Kλ to denote the (relative) inner/outer parallel bodies
of K, i.e.,

(1.1) Kλ :=

{
K ∼ |λ|E for − r(K; E) ≤ λ ≤ 0,

K + λE for 0 ≤ λ < ∞.

Minkowski subtraction is a kind of complementary operation to Minkowski addition:
it is easy to prove (see [22, pp. 133–134]) that, in general,

(K + E) ∼ E = K but (K ∼ E) + E ⊆ K.

Equality holds in the above inclusion if and only if E is a summand of K, i.e.,
K = L + E for some L ∈ Kn. A detailed study of the Minkowski difference and of
summands of convex bodies can be found in [22, s. 3.1, 3.2].

The so called relative Steiner formula states that the volume of the outer parallel
body K + λE is a polynomial of degree n in λ ≥ 0,

(1.2) V(K + λE) =
n∑

i=0

(
n

i

)
Wi(K;E)λi.

The coefficients Wi(K; E) are called relative quermassintegrals of K, and they are
just a special case of the more general mixed volumes for which we refer to [22, s. 5.1]
and [7, s. 6.2, 6.3]. In particular, we have W0(K; E) = V(K) and Wn(K; E) =
V(E). If E = Bn, then the polynomial in the right hand side of (1.2) becomes the
classical Steiner polynomial, see [23]. For the sake of brevity we write fK,E(λ) =∑n

i=0

(
n
i

)
Wi(K; E)λi to denote the relative Steiner polynomial of K ∈ Kn with

respect to E ∈ Kn
0 .

Analogous formulae to (1.2) give the value of the relative i-th quermassintegral
of K + λE, namely

(1.3) Wi(K + λE; E) =
n−i∑

k=0

(
n− i

k

)
Wi+k(K; E)λk,

for λ ≥ 0 and i = 0, . . . , n (see [22, (5.1.27) and p. 212]). However, the boundary
structure of inner parallel bodies is rather more difficult to control (they are not
built just by using a vectorial operation in the Euclidean space), and it also entails
that there is no standard way to compute (in general) their volume (quermassinte-
grals). In [14, 15] the interested reader can find a detailed study of this question,
where it is also proved that there is even no chance to give lower/upper bounds for
the volume of the inner parallel body of K ∈ Kn in terms of the so called alternating
Steiner polynomial (the polynomial obtained from (1.2) replacing λ by −λ).

The polynomial expression (1.3) for the quermassintegrals of outer parallel bodies
leads to consider the more general function Wi(λ) := Wi(Kλ;E), λ ≥ −r(K; E),
which is trivially differentiable for λ ≥ 0 (right derivative for λ = 0). So, the
problem arises to determine differentiability properties of Wi(λ) when inner parallel
bodies are considered. From the concavity of the family (1.1) and the general
Brunn-Minkowski theorem for relative quermassintegrals (see e.g. [22, p. 339]),
it is obtained that ·Wi(λ) ≥ W·i(λ) ≥ (n − i)Wi+1(λ) for i = 0, . . . , n − 1 and
for −r(K; E) ≤ λ ≤ 0. Here ·Wi and W·i denote, respectively, the left and right
derivatives of the function Wi(λ), and for λ = −r(K; E) (respectively, λ = 0) only
the right (left) derivative is considered. In [13] the following natural definition is
introduced.
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Definition 1.1. Let E ∈ Kn
0 and let p be an integer, 0 ≤ p ≤ n−1. A convex body

K ∈ Kn belongs to the class Rp if, for all 0 ≤ i ≤ p and for −r(K; E) ≤ λ < ∞, it
holds

(1.4) ·Wi(λ) = W·i(λ) = W′
i(λ) = (n− i)Wi+1(λ).

Here W′
i denotes the full derivative of Wi since the function is differentiable.

Notice that the class Rp depends on the fixed convex body E. Nevertheless, and
for the sake of simplicity, we omit E in the notation. Observe also that (1.4) trivially
holds for outer parallel bodies (cf. (1.3)).

It is well-known (see e.g. [1, 17]) that the volume is always differentiable with
respect to λ and V′(λ) = nW1(λ), which implies that R0 = Kn. Just from the
definition it holds Ri+1 ⊂ Ri, i = 0, . . . , n − 2, and all these inclusions are strict
(see [13]), since there exist (n− i− 1)-tangential bodies of E lying in Ri which are
not in Ri+1 (see Section 2 for the definition). It can be also easily proved that if
K ∈ Rp, then K + ρE ∈ Rp for all ρ ≥ 0 (see Remark 4.1).

In [8, §23, §29] Hadwiger classified 3-dimensional convex bodies according to the
differentiability of quermassintegrals in the above sense, for E = B3, defining three
classes, Rα, Rβ , Rγ , which correspond in our notation to R0, R1, R2, respectively.
Earlier, Bol [1, p. 52] had asked for which convex bodies equality in (1.4) is satisfied
when i = 1, i.e., which are the sets inRβ . In [13] the general n-dimensional problem
is studied. In particular, it is shown that the smallest class is given by

(1.5) Rn−1 =
{
L + λE : L ∈ Kn, dim L ≤ n− 1, λ ≥ 0

}

for all E ∈ Kn
0 . Furthermore some necessary conditions for a convex body to belong

to the other classes are given.
In this paper we determine the convex bodies lying in the class Rn−2:

Theorem 1.1. Let E ∈ Kn
0 be regular and strictly convex. A convex body K ∈

Rn−2 if and only if K is (an outer parallel body of) a cap-body of any set lying in
Rn−1, satisfying the condition

(1.6) clU0(K) = U0(Kλ + K∗)

for −r(K;E) ≤ λ ≤ 0.

Here U0(K) denotes the set of the so called 0-extreme vectors of K, and K∗ is
its relative form body (see Section 2 for definitions). A cap-body of E is the convex
hull of E and countably many points such that the line segment joining any pair of
those points intersects E.

Although condition (1.6) is technical and possibly not easy to interpret, there is a
lot of geometry hidden behind it: Corollary 4.1 and Remark 4.2 collect geometrical
properties implied by this condition, whereas Remark 2.1 shows a convex body
not satisfying (1.6). Notice also that the class Rn−1 can be characterized in full
generality for an arbitrary E ∈ Kn

0 , since the proof relies ultimately on formulae
(1.3). However, the technical requirements for the proof of Theorem 1.1 do not
allow a direct extension to an arbitrary E ∈ Kn

0 , and the regularity and strict
convexity are needed.

Theorem 1.1 answers the question posed by Bol in [1], and together with charac-
terization (1.5) of Rn−1 we set the complete description of the bodies lying in the
classes defined by Hadwiger. To describe the solution we keep the original notation
in [8] for the classes Rp in dimension n = 3 with E = B3, namely, Rβ = R1 and
Rγ = R2.
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Corollary 1.1. The only sets in Rγ are outer parallel bodies of k-dimensional
convex bodies, for 0 ≤ k ≤ 2, i.e.,

Rγ =
{
L + λB3 : L ∈ K3, dim L ≤ 2, λ ≥ 0

}
.

A convex body K ∈ Rβ if and only if K is (an outer parallel body of) a cap-body of
any set lying in Rγ , satisfying (1.6) for −r(K;B3) ≤ λ ≤ 0.

Theorem 1.1 has a consequence on the behavior of the roots of the Steiner poly-
nomial fK,E(λ). Based on a problem posed by Teissier in [24], Sangwine-Yager
stated in [19] the following conjecture (see also [20, p. 65]).

Conjecture 1.1. Let K, E ∈ Kn. If a1 ≤ · · · ≤ an are the real parts of the roots
of fK,E(λ), then a1 ≤ −R(K; E) ≤ −r(K; E) ≤ an ≤ 0.

Here R(K; E) = min{R : ∃x ∈ Rn with K ⊆ x + R E} is the relative circumra-
dius of K with respect to E. The full conjecture is known to be true in dimension
n = 2, but false in general dimension. Precisely, in [10, 11] it is shown that:

i) ai ≤ 0 for all i = 1, . . . , n when n ≤ 9, whereas for n = 12 there are sets K
for which fK,B12(λ) has roots with strictly positive real part.

ii) for n = 3 and E = B3 there exist convex bodies K such that ai > R(K; B3)
for all i = 1, . . . , n.

iii) for n = 3 there are convex bodies K, E such that ai < r(K; E) for all
i = 1, . . . , n.

However, for the counterexamples of case iii) the gauge body is not the ball. So the
conjecture might be true (for some value of the dimension) when the gauge body
is E = Bn. As a consequence of Theorem 1.1 we are able to prove that it is not so
for n = 3 and E = B3.

Theorem 1.2. There exists K ∈ K3
0 such that all the roots of fK,B3(λ) are real

and strictly less than −r(K; B3).

The paper is organized as follows. In Section 2 we give the needed notation
and definitions, as well as preliminary lemmas. The proof of Theorem 1.1 relies
on results which state properties of the sets lying in Rn−2; they are contained in
Section 3. The last two sections are mainly devoted to the proofs of Theorem 1.1
and Theorem 1.2, respectively.

2. Additional notation and preliminary lemmas

For convex bodies K1, . . . , Km ∈ Kn and real numbers λ1, . . . , λm ≥ 0, the
volume of the linear combination λ1K1 + · · ·+ λmKm is expressed as a polynomial
of degree n in the variables λ1, . . . , λm,

V
(
λ1K1 + · · ·+ λmKm

)
=

m∑

i1=1

· · ·
m∑

in=1

V(Ki1 , . . . , Kin)λi1 · · ·λin ,

whose coefficients V(Ki1 , . . . ,Kin) are the mixed volumes of K1, . . . , Km. This for-
mula (and hence mixed volumes) extends the relative Steiner formula (1.2) (relative
quermassintegrals). In particular, the i-th quermassintegral

(2.1) Wi(K; E) = V
(
K, (n−i). . . , K, E, (i). . ., E

)
.
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The mixed surface area measure S(K1, . . . ,Kn−1; ·), for K1, . . . , Kn−1 ∈ Kn, is the
unique finite Borel measure on Sn−1 such that for all K ∈ Kn,

(2.2) V(K, K1, . . . , Kn−1) =
1
n

∫

Sn−1
h(K,u) dS(K1, . . . , Kn−1; u).

Here h(K, u) = sup
{〈x, u〉 : x ∈ K

}
, u ∈ Rn, denotes the support function

of the set K ∈ Kn (see e.g. [22, s. 1.7]). For the sake of brevity we will
write

(
K1[r1], . . . , Km[rm]

) ≡ (
K1,

(r1). . . , K1, . . . ,Km, (rm). . . , Km

)
. For a deep study

of mixed volumes and mixed surface area measures we refer to [22, s. 5.1].
A vector u ∈ Sn−1 is an r-extreme normal vector of K, 0 ≤ r ≤ n − 1, if it

cannot be written as u = u1 + · · · + ur+2, with ui linearly independent normal
vectors at one and the same boundary point of K. We write Ur(K) to denote the
set of r-extreme normal vectors of K and it is clear that Ur(K) ⊆ Us(K) for any
0 ≤ r < s ≤ n− 1. Polytopes provide an easy example in order to distinguish the
different types of extreme vectors: the normal vectors at any point of the relative
interior of an (n− i)-face is an (i− 1)-extreme vector. Notice also that if x ∈ bd K
is a regular point, then the only outer normal vector at x is 0-extreme; indeed,
0-extreme vectors are normal vectors either at regular points or at limits of regular
points. We mention also that, in general, the set U0(K) is not closed, as shown
in Figure 1, the intersection of a cylinder and two suitable subspaces: all normal
vectors at any point in the circle C are 0-extreme except for u0.

-

C

u0

Figure 1. U0(K) is not closed (figure is taken from [18, p.28]).

A support plane is said to be r-extreme if its outer normal vector is r-extreme.
For a detailed study of r-extreme vectors we refer to [22, s. 2.2] (see also [18, ch. 2]).

The (relative) form body of a convex body K ∈ Kn
0 with respect to E ∈ Kn

0 ,
denoted by K∗, is defined as (see e.g. [4])

K∗ =
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h(E, u)

}
.

Notice that (K∗)∗ = K∗. For an alternative (equivalent) definition of form body
see [22, p. 321]. Notice that K∗ depends also on the gauge body E. Nevertheless,
and for the sake of simplicity, we again omit E in the notation.

Finally, a convex body K ∈ Kn containing E ∈ Kn
0 is called a p-tangential body

of E, p ∈ {0, . . . , n−1}, if each (n−p−1)-extreme support plane of K supports E.
For further characterizations and properties of p-tangential bodies we refer to [22,
Section 2.2]. It is easy to see that a 0-tangential body of E is E itself and each p-
tangential body is also a q-tangential body for p < q ≤ n−1. Moreover, 1-tangential
bodies are just the cap-bodies (see [22, p. 76]). We will briefly call tangential body
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an (n − 1)-tangential body. Notice that the form body K∗ of a convex body K is
always a tangential body of E, and there exist p-tangential bodies of E which are
not (p− 1)-tangential bodies of E (see e.g. [6, p. 163] or [10, Proof Th. 1.2]).

2.1. Some preliminary results. In [13, Lemma 2.1] it is shown that if E ∈ Kn
0

is a regular convex body then, for any K ∈ Kn,

(2.3) clU0(K) = U0(K∗).

Moreover, it is known that for any K ∈ Kn and −r < λ ≤ 0 it holds (see [18,
Lemma 4.5])

(2.4) U0(Kλ) ⊆ U0(K),

and for any K,L ∈ Kn we have (see [18, Lemma 2.4])

(2.5) U0(K) ∪ U0(L) ⊆ U0(K + L)

and (see [15, Lemma 3.1])

(2.6) U0(K + L) = U0(K + λL), λ > 0.

We show a similar property regarding the (n− 2)-extreme vectors of the sum.

Lemma 2.1. Let K, L ∈ Kn. Then for any µ > 0 it holds

clUn−2(K + µL) = clUn−2(K) ∪ clUn−2(L).

Proof. Let E ∈ Kn be a regular and strictly convex body. Then it is known (see
[21, pp. 135–136]) that for any K ∈ Kn and for i = 0, . . . , n− 1,

(2.7) supp S
(
K[n− i− 1], E[i]; ·) = clUi(K).

Here supp ν denotes the support of the measure ν.
In particular, clUn−2(K + µL) = supp S

(
K + µL,E[n− 2]; ·), and the linearity

of the surface area measure in each argument (see [22, p. 279]), i.e.,

S
(
K + µL,E[n− 2]; ·) = S

(
K, E[n− 2]; ·) + µS

(
L,E[n− 2]; ·),

allows us to conclude that
supp S

(
K+µL,E[n− 2]; ·) = supp S

(
K,E[n− 2]; ·) ∪ supp S

(
L,E[n− 2]; ·)

= clUn−2(K) ∪ clUn−2(L),

as required. ¤
From now on we will write r = r(K; E) for the sake of brevity, unless it is not

clear from the context.
It is known (see [18, Lemma 4.8]) that it always holds

(2.8) K ⊇ Kλ + |λ|K∗

for any K ∈ Kn, E ∈ Kn
0 and all −r < λ ≤ 0. Taking into account that

limλ→−r Kλ = K−r (see e.g. [9, s. 4.3.1]) and the continuity of the support func-
tion on Kn with respect to the Hausdorff metric, it is easy to see that whenever
a relation of the type (2.8) holds for −r < λ ≤ 0, then also the case λ = −r is
covered:

Lemma 2.2. Let K ∈ Kn and let E ∈ Kn
0 . If K = Kλ + |λ|K∗ for every −r <

λ ≤ 0, then it also holds K = K−r + rK∗.

In [15, Theorem 2.2] the convex bodies K ∈ Kn satisfying K = Kλ + |λ|K∗ for
every −r ≤ λ ≤ 0 are characterized:
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Theorem 2.1 ([15, Theorem 2.2]). Let K, E ∈ Kn
0 with E regular. Then K =

Kλ + |λ|K∗ for every −r ≤ λ ≤ 0 if and only if K is a tangential body of K−r +rE
satisfying that for all −r ≤ λ ≤ 0,

(2.9) U0(K) = U0(Kλ + K∗).

It can be proved that this characterization may be expressed in terms of condition
(1.6) in the following way.

Theorem 2.2. Let K,E ∈ Kn
0 with E regular. Then K = Kλ + |λ|K∗ for every

−r ≤ λ ≤ 0 if and only if K is a tangential body of K−r + rE satisfying condition
(1.6) for all −r ≤ λ ≤ 0.

We would like to notice that conditions (1.6) and (2.9) are equivalent in this
particular case, because the special fact that K = Kλ + |λ|K∗ implies that U0(K)
is closed (cf. also Figure 1).

In order to show Theorem 2.2 we need the following result, proved in [18]. We
write K∗

λ = (Kλ)∗ to denote the form body of the inner parallel body of K at
distance |λ|, −r < λ ≤ 0; notice that K∗

−r can be unbounded or empty.

Lemma 2.3 ([18, Corollary to Lemma 4.8 and Lemma 4.9]). Let K ∈ Kn and let
E ∈ Kn

0 . If for every −r < λ ≤ 0

(2.10) clU0(Kλ) = U0(Kλ + K∗
λ),

then the following properties hold:
i) K ⊆ Kλ + |λ|K∗

λ and

ii)
d

dλ
h(Kλ, u) = h(K∗

λ, u) for every u ∈ Sn−1.

We point out that, for all u ∈ Sn−1, since h(Kλ, u) is concave and monotonous
with respect to λ ∈ (−r, 0], the derivative of h(Kλ, u) always exists almost every-
where for λ ≤ 0 (cf. [18, Lemma 4.9]).

Notice also that condition (2.10) differs from condition (1.6) (when λ 6= 0), and
none of these implies the other. A detailed study about condition (2.10) can be
found in [18, p. 39]

Proof of Theorem 2.2. If K = Kλ + |λ|K∗ for every −r ≤ λ ≤ 0, then Theorem
2.1 yields that K is a tangential body of K−r +rE satisfying condition (2.9) which,
together with (2.5), (2.3) and (2.4) gives

U0(K) = U0(Kλ + K∗) ⊇ U0(Kλ) ∪ U0(K∗) = U0(Kλ) ∪ clU0(K) = clU0(K).

This implies that U0(K) = clU0(K), and hence we get condition (1.6).
It remains to show that if K is a tangential body of K−r + rE satisfying (1.6)

for all −r ≤ λ ≤ 0, then K = Kλ + |λ|K∗ for every −r ≤ λ ≤ 0. Since K is a
tangential body of K−r + rE, it is known (see [15, Lemma 3.2]) that

(2.11) U0(Kλ) = U0(K) for − r < λ ≤ 0,

which implies that K∗ = K∗
λ for −r < λ ≤ 0. Then

clU0(Kλ) = clU0(K) = U0(Kλ + K∗) = U0(Kλ + K∗
λ)

for −r < λ ≤ 0, and we can apply Lemma 2.3 ii) to get
d

dλ
h(Kλ, u) = h(K∗

λ, u) = h(K∗, u), for − r < λ ≤ 0, u ∈ Sn−1.
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Now for each u ∈ Sn−1, the function f(λ) = h(K, u) − h(Kλ, u) + λh(K∗, u) is
absolutely continuous (since h(Kλ, u) is concave in λ, see [7, Theorem 1.1]), almost
everywhere differentiable and satisfies f ′(λ) = 0 for −r < λ ≤ 0 and f(0) = 0.
Then f ≡ 0 in −r < λ ≤ 0, i.e.,

h(K, u) = h(Kλ, u) + |λ|h(K∗, u) = h(Kλ + |λ|K∗, u)

which implies that K = Kλ + |λ|K∗ for −r < λ ≤ 0. Lemma 2.2 ensures that
K = Kλ + |λ|K∗ in the full range −r ≤ λ ≤ 0. ¤

Next lemma shows, roughly speaking, that the property of being a cap-body is
“transfered” to the inner parallel bodies and the form body.

Lemma 2.4. Let E ∈ Kn
0 be a regular convex body and let K ∈ Kn be a cap-body

of K−r + rE satisfying condition (1.6) for all −r ≤ λ ≤ 0. Then
i) K∗ is a cap-body of E and
ii) Kλ is a cap-body of K−r + (r + λ)E.

Proof. i) Since K is a cap-body of K−r + rE satisfying (1.6), Theorem 2.2 ensures
that K = Kλ + |λ|K∗ for every −r ≤ λ ≤ 0. Then by Lemma 2.1 we get, in
particular, that

clUn−2(K∗) ⊆ clUn−2

(
Kλ + |λ|K∗) = clUn−2(K).

From the regularity of E we know that clU0(K) = U0(K∗) (cf. (2.3)) and moreover,
K−r +rE is also regular. Hence, since K is a cap-body of K−r +rE, it follows that
U0(K) = Un−2(K) and we get

Un−2(K∗) ⊆ clUn−2(K∗) ⊆ clUn−2(K) = clU0(K) = U0(K∗).

Then K∗ is a tangential body of E satisfying that U0(K∗) = Un−2(K∗), which
shows that K∗ is a cap-body of E.

Now we prove ii). In [15, (3.8)] it is shown that whenever we have the decom-
position K = Kλ + |λ|K∗ for K ∈ Kn and all λ ∈ [−r, 0], then

(2.12) Kλ = K−r + (r + λ)K∗

for all λ ∈ [−r, 0]. By Theorem 2.2, K = Kλ + |λ|K∗ for every λ ∈ [−r, 0], and
thus (2.12) holds. Moreover, since K is a tangential body of K−r + rE, we know
that U0(Kλ) = U0(K), i.e., K∗ = K∗

λ, for −r < λ ≤ 0 (cf. (2.11)). Thus, we get
Kλ = K−r +(r+λ)K∗ = K−r +(r+λ)K∗

λ, and Theorem 2.2 applied to Kλ ensures
that all inner parallel bodies of K are tangential bodies of K−r + (r + λ)E. It
remains to show that moreover, it is a cap-body of K−r + (r + λ)E. From (2.12) it
follows that for any −r ≤ λ ≤ 0 and every u ∈ U0(K)

h(Kλ, u) = h(K−r, u) + (r + λ)h(K∗, u) = h(K−r, u) + (r + λ)h(E, u).

Then it is enough to prove that

(2.13) U0(Kλ) = Un−2(Kλ) for every − r < λ ≤ 0,

since these last two assertions, together with (2.11), imply that

h(Kλ, u) = h(K−r, u) + (r + λ)h(E, u) = h
(
K−r + (r + λ)E, u

)

for every u ∈ U0(K) = U0(Kλ) = Un−2(Kλ)

and any −r < λ ≤ 0; it shows that Kλ is a cap-body of K−r + (r + λ)E.
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We prove (2.13). Using Lemma 2.1 twice and (2.12) we get

clUn−2(K) = clUn−2(K−r + rK∗) = clUn−2(K−r) ∪ clUn−2(K∗)

= clUn−2

(
K−r + (r + λ)K∗) = clUn−2(Kλ).

Moreover, since K is a cap-body of a regular convex body, it holds that U0(K) =
Un−2(K), and with (2.11) we can conclude that

clU0(Kλ) = clU0(K) = clUn−2(K) = clUn−2(Kλ)

for every −r < λ ≤ 0. Finally we show that the closures can be omitted. Indeed,
since Kλ = K−r + (r + λ)K∗, then by (2.5) we get that, in particular, U0(K∗) ⊆
U0(Kλ). Thus, together with (2.11) and (2.3) we obtain that

clU0(Kλ) = clU0(K) = U0(K∗) ⊆ U0(Kλ) ⊆ Un−2(Kλ) ⊆ clUn−2(Kλ).

Since clU0(Kλ) = clUn−2(Kλ), the inclusions in the middle also coincide, i.e.,
U0(Kλ) = Un−2(Kλ), as required. ¤

Remark 2.1. Note that condition (1.6) cannot be omitted in the above lemma, as
the following example, provided in [15, Remark 3.2], shows. Let σ ⊂ R3 be a line
segment of length not smaller than 2 and take a point x lying outside the solid
cylinder with circular cross section of radius 1 and axis the line aff σ. The convex
body K = conv{σ +B3, x} (see Figure 2, left) is a cap-body of σ +B3 = K−1 +B3,
since r(K;B3) = 1 and K−1 = σ. In addition, K∗ is the convex hull of B3 and
a suitable segment (see Figure 2, right), which yields that K−1 + K∗ has more 0-
extreme vectors than K, namely, (0, 0, 1) ∈ U0(K−1 + K∗)\U0(K). Thus condition
(1.6) does not hold. Besides, item i) in Lemma 2.4 is not fulfilled.

Figure 2. A cap-body of K−r + rB3 not satisfying (1.6) and its
form body.

The following lemma shows that condition K = Kλ + |λ|K∗ can be related to
the linearity of the family Kλ. Again condition (1.6) plays a crucial role.

Lemma 2.5. Let E ∈ Kn
0 be a regular convex body and K ∈ Kn. Then K =

Kλ + |λ|K∗ for any −r ≤ λ ≤ 0 if and only if

(2.14) Kλ =
|λ|
r

K−r +
(

1− |λ|
r

)
K

for every −r ≤ λ ≤ 0 and condition (1.6) holds.

Proof. First we assume that K = Kλ + |λ|K∗. Then from Theorem 2.2 we get
condition (1.6), and it also holds that Kλ = K−r +

(
r− |λ|)K∗ for any −r ≤ λ ≤ 0.
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Thus,

|λ|
r

K−r +
(

1− |λ|
r

)
K =

|λ|
r

K−r +
(

1− |λ|
r

) (
Kλ + |λ|K∗)

=
|λ|
r

K−r +
r− |λ|

r
Kλ +

|λ|
r

(
r− |λ|)K∗

=
|λ|
r

[
K−r +

(
r− |λ|)K∗

]
+

r− |λ|
r

Kλ

=
|λ|
r

Kλ +
r− |λ|

r
Kλ = Kλ.

Conversely, now we assume (2.14) and (1.6). Using (2.4), (2.5) and (2.6) we get
from (2.14) that

U0(Kλ) ⊇ U0(K−r) ∪ U0(K) ⊇ U0(K) ⊇ U0(Kλ)

for all −r < λ ≤ 0, i.e., U0(Kλ) = U0(K). On the other hand, it is known (see [18,
Lemma 4.4]) that if u ∈ U0(Kλ) then h(Kλ, u) = h(K, u) − |λ|h(E, u). Thus for
every u ∈ U0(K) = U0(Kλ) we have

h(K, u)− |λ|h(E, u) = h(Kλ, u) =
|λ|
r

h(K−r, u) +
(

1− |λ|
r

)
h(K, u)

for any −r < λ ≤ 0, i.e.,

|λ|
r

h(K, u) =
|λ|
r

h(K−r, u) + |λ|h(E, u),

which leads to

h(K, u) = h(K−r, u) + r h(E, u) = h(K−r + rE, u)

for every u ∈ U0(K). It shows that K is a tangential body of K−r + rE satisfying,
by hypothesis, (1.6). Theorem 2.2 allows us to conclude that K = Kλ + |λ|K∗. ¤

3. Towards the geometry of Rn−2

Our aim in this section is to show that condition (1.6) is necessary for a convex
body to lie in Rn−2, as well as characterize the tangential bodies of K−r +rE lying
in Rn−2. We start proving the necessity of (1.6).

Proposition 3.1. Let E ∈ Kn
0 be a regular and strictly convex body and let K ∈

Rn−2. Then clU0(K) = U0(Kλ + K∗) for every −r < λ ≤ 0.

Proof. First notice that since E is regular then (cf. (2.3) and (2.5))

clU0(K) = U0(K∗) ⊆ U0(Kλ) ∪ U0(K∗) ⊆ U0(Kλ + K∗),

and we have to show the reverse inclusion. Any K ∈ Rn−1 is an outer parallel body
of a lower dimensional set (cf. (1.5)), and hence condition (1.6) holds trivially since
K is regular, i.e., since U0(K) = Sn−1. Thus we assume that K ∈ Rn−2\Rn−1 and
it follows from [13, Theorem 1.2, iv)] that

(3.1) clU0(Kλ) = clU1(Kλ) = · · · = clUn−2(Kλ)

for every −r < λ ≤ 0. Now, since E is regular and strictly convex, it holds
clU0(Kλ +K∗) = supp S

(
Kλ +K∗[n− 1]; ·) (cf. (2.7)). The linearity of the surface
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area measure in each argument yields

supp S
(
Kλ + K∗[n− 1]; ·) = supp S

(
Kλ[n− 1]; ·) ∪ supp S

(
K∗[n− 1]; ·)

∪
[

n−2⋃

i=1

supp S
(
Kλ[i],K∗[n− i− 1]; ·)

]
,

and hence we get that

U0(Kλ + K∗) ⊆ clU0(Kλ + K∗) = supp S
(
Kλ + K∗[n− 1]; ·)

= clU0(Kλ) ∪ clU0(K∗) ∪
[

n−2⋃

i=1

supp S
(
Kλ[i], K∗[n−i−1]; ·)

]
.

In [21, Lemma 3.4] it is shown that, for any n− 1 sets K, K1, . . . ,Kn−2 ∈ Kn,

supp S
(
K, K1, . . . , Kn−2; ·

) ⊆ supp S
(
E,K1, . . . ,Kn−2; ·

)
,

provided E ∈ Kn
0 is regular and strictly convex. Hence, we have

supp S
(
Kλ[i],K∗[n− i− 1]; ·) ⊆ supp S

(
Kλ[i], E[n− i− 1]; ·) = clUn−i−1(Kλ)

for i = 1, . . . , n − 2 (cf. (2.7)) and thus, together with (3.1), (2.3) and (2.4) it
follows that

U0(Kλ + K∗) ⊆ clU0(Kλ) ∪ clU0(K∗) ∪
[

n−2⋃

i=1

clUn−i−1(Kλ)

]

= clU0(Kλ) ∪ clU0(K∗) = clU0(Kλ) ∪ clU0(K) = clU0(K),

which shows the result. ¤

Proposition 3.2. Let E ∈ Kn
0 be a regular and strictly convex body and let K ∈ Kn

be a tangential body of K−r + rE. Then, K ∈ Rn−2 if and only if K is a cap-body
of K−r + rE satisfying (1.6) for −r ≤ λ ≤ 0.

Proof. First we assume that K ∈ Rn−2. Then Proposition 3.1 ensures that K
satisfies (1.6) for −r < λ ≤ 0. On the other hand, since K is a tangential body
of K−r + rE, we have U0(Kλ) = U0(K) for all −r < λ ≤ 0 (cf. (2.11)) and hence
K∗ = K∗

λ for −r < λ ≤ 0. Thus condition (1.6) can be rewritten as clU0(Kλ) =
U0(Kλ +K∗

λ), and by Lemma 2.3 i) we have K ⊆ Kλ + |λ|K∗
λ for −r < λ ≤ 0. Since

K ⊇ Kλ + |λ|K∗ always holds (cf. (2.8)), both inclusions together with K∗ = K∗
λ

show that K = Kλ + |λ|K∗ for all −r < λ ≤ 0.
Notice that we have shown the above equality for the half-open interval (0,−r],

and so we can apply Lemma 2.2 to get that K = Kλ + |λ|K∗ for every λ ∈ [−r, 0].
Then Theorem 2.2 ensures that, in particular, condition (1.6) holds for −r ≤ λ ≤ 0.
It remains to show that K is a cap-body of K−r + rE. Since K = Kλ + |λ|K∗ for
all λ ∈ [−r, 0], by Lemma 2.5 we get

Kλ =
|λ|
r

K−r +
(

1− |λ|
r

)
K.
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By the linearity of mixed volumes (see e.g. [22, p. 279]), the above representation
of Kλ can be used to compute Wn−1(λ) and Wn−2(λ) (cf. (2.1)):

Wn−1(λ) = V
(
Kλ, E[n− 1]

)
= −λ

r
Wn−1(K−r; E) +

(
1 +

λ

r

)
Wn−1(K; E),

Wn−2(λ) = V
(
Kλ[2], E[n− 2]

)
=

(
λ

r

)2

Wn−2(K−r;E)

− 2
λ

r

(
1 +

λ

r

)
V

(
K−r,K, E[n− 2]

)
+

(
1 +

λ

r

)2

Wn−2(K; E),

and hence

W′
n−2(λ) =

2
r

[
λ

r
Wn−2(K−r; E)−

(
1 + 2

λ

r

)
V

(
K−r,K, E[n− 2]

)

+
(

1 +
λ

r

)
Wn−2(K; E)

]
.

Since K ∈ Rn−2 it holds W′
n−2(λ) = 2Wn−1(λ) and identifying the corresponding

coefficients in the above polynomials we get, in particular,

rWn−1(K; E) = Wn−2(K;E)−V
(
K−r,K, E[n− 2]

)
,

or equivalently,

V
(
K[2], E[n− 2]

)
= V

(
K, K−r + rE, E[n− 2]

)
.

Then, using formula (2.2) for mixed volumes we get

(3.2)
∫

Sn−1

[
h(K, u)− h(K−r + rE, u)

]
dS

(
K,E[n− 2];u

)
= 0,

and since K−r + rE ⊆ K, (3.2) is equivalent to h(K,u) = h(K−r + rE, u) for all
u ∈ supp S

(
K, E[n− 2]; ·) = clUn−2(K). So K is a cap-body of K−r + rE.

Now we prove the converse. Let K be a cap-body of K−r + rE satisfying (1.6)
for −r ≤ λ ≤ 0. We have to show that K ∈ Rn−2, i.e., the real function Wi(λ)
is differentiable and W′

i(λ) = (n − i)Wi+1(λ) for all i = 0, . . . , n − 2 and any
−r ≤ λ ≤ 0.

By Theorem 2.2 we can write K = K−r + rK∗, which implies (cf. (2.12)) that
Kλ = K−r + (r + λ)K∗. Hence, for every i = 0, . . . , n− 2 the linearity of the mixed
volumes yields

Wi(λ) = V
(
Kλ[n− i], E[i]

)

=
n−i∑

k=0

(
n− i

k

)
(r + λ)kV

(
K−r[n− i− k], K∗[k], E[i]

)
,

(3.3)

which is clearly differentiable, and thus

W′
i(λ) =

n−i∑

k=1

(
n− i

k

)
k(r + λ)k−1V

(
K−r[n− i− k], K∗[k], E[i]

)

=
n−i−1∑

k=0

(
n− i

k+1

)
(k + 1)(r + λ)kV

(
K−r[n− i− k − 1],K∗[k + 1], E[i]

)
.
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Therefore, K ∈ Rn−2, i.e., W′
i(λ) = (n − i)Wi+1(λ), if and only if (comparing

coefficients of the corresponding polynomials, cf. (3.3))
(

n− i

k + 1

)
(k + 1)V

(
K−r[n− i− k − 1],K∗[k + 1], E[i]

)

= (n− i)
(

n− i− 1
k

)
V

(
K−r[n− i− k − 1],K∗[k], E[i + 1]

)

for all i = 0, . . . , n − 2 and k = 0, . . . , n − i. Since (k + 1)
(

n−i
k+1

)
= (n − i)

(
n−i−1

k

)
,

K lies in the class Rn−2 if and only if

(3.4) V
(
K−r[n− i−k−1],K∗[k], E[i+1]

)
= V

(
K−r[n− i−k−1],K∗[k+1], E[i]

)

for all i = 0, . . . , n − 2 and any k = 0, . . . , n − i. Thus, in order to conclude the
proof, (3.4) remains to be shown. Notice that the case i = n − 2, k = 1 in (3.4),
i.e., the identity V

(
K∗, E[n − 1]

)
= V

(
K∗[2], E[n − 2]

)
, is equivalent to the fact

that K∗ is a cap-body of E, as we already know by Lemma 2.4.
Since Kλ = K−r + (r + λ)K∗ is a cap-body of K−r + (r + λ)E (Lemma 2.4) we

can assure that

h(Kλ, u) = h
(
K−r + (r + λ)E, u

)
for every u ∈ Un−2(Kλ),

and so for all u ∈ supp S
(
Kλ[n − i − 1], E[i]; ·), and any i = 0, . . . , n − 2. Thus,

using the formula for the mixed volumes given in (2.2) we get that

V
(
Kλ[n− i− 1],K−r + (r + λ)E,E[i]

)
= V

(
Kλ[n− i], E[i]

)
,

which leads to
V

(
Kλ[n− i− 1],K−r, E[i]

)
+ (r + λ)V

(
Kλ[n− i− 1], E[i + 1]

)

= V
(
Kλ[n− i− 1],K−r + (r + λ)E, E[i]

)
= V

(
Kλ[n− i], E[i]

)

= V
(
Kλ[n− i− 1],K−r + (r + λ)K∗, E[i]

)

= V
(
Kλ[n− i− 1],K−r, E[i]

)
+ (r + λ)V

(
Kλ[n− i− 1],K∗, E[i]

)
,

this is,
V

(
Kλ[n− i− 1], E[i + 1]

)
= V

(
Kλ[n− i− 1],K∗, E[i]

)
.

Finally, writing Kλ = K−r + (r + λ)K∗ in the above equality and using the corre-
sponding polynomial expressions for the mixed volumes (see [22, p. 280], cf. (1.3)),
we get the identity

n−i−1∑

k=0

(r + λ)kV
(
K−r[n− i− k − 1],K∗[k], E[i + 1]

)

=
n−i−1∑

k=0

(r + λ)kV
(
K−r[n− i− k − 1],K∗[k + 1], E[i]

)

for all −r ≤ λ ≤ 0. Comparing coefficients we get (3.4). ¤

4. The main theorem and consequences

Remark 4.1. For ρ ≥ 0 fixed, it is clear that r(K+ρE;E) = r+ρ, where r = r(K; E),
and the inner parallel bodies of K + ρE are given by

(K + ρE)λ = Kρ+λ =

{
K + (ρ + λ)E for − ρ ≤ λ ≤ 0,

K ∼ |ρ + λ|E for − (r + ρ) ≤ λ ≤ −ρ.
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Then, for all λ ∈ [−(r + ρ), 0
]
, Wi

(
(K + ρE)λ

)
, 0 ≤ i ≤ n, is the i-th quer-

massintegral of the corresponding inner/outer parallel body of K. In particular,
if K ∈ Rp, 0 ≤ p ≤ n − 1, then Wi

(
(K + ρE)λ

)
, 0 ≤ i ≤ p, is, up to a linear

change of parameter, the i-th quermassintegral of the corresponding inner/outer
parallel body of K ∈ Rp; just notice that now the convex body K corresponds to
λ = −ρ. This linear change of parameter ensures the needed differentiability of the
quermassintegrals of (K + ρE)λ for all λ ∈ [−(r + ρ), 0

]
. It shows that if K ∈ Rp,

then K + ρE ∈ Rp.

Proof of Theorem 1.1. By Remark 4.1 we may assume that (a dilation of) E is not
a summand of K.

From Proposition 3.2 it follows that cap-bodies of K−r +rE satisfying condition
(1.6) lie in Rn−2.

Conversely, let K ∈ Rn−2\Rn−1. Then we already know (cf. (3.1)) that

clU0(Kλ) = clU1(Kλ) = · · · = clUn−2(Kλ), for all − r < λ ≤ 0.

Since K ∈ Rn−2, all inner parallel bodies Kλ ∈ Rn−2, −r < λ ≤ 0, because their
quermassintegrals satisfy the same differentiability conditions. Notice that the case
λ = −r is excluded here since K−r has no inner parallel bodies. Hence, applying
Proposition 3.1 to Kλ we get

(4.1) clU0(Kλ) = U0(Kλ + K∗
λ), −r < λ ≤ 0,

and with Lemma 2.3 i) we conclude that

(4.2) K ⊆ Kλ + |λ|K∗
λ

for every −r < λ ≤ 0. Since Kλ + |λ|K∗ ⊆ K always holds (cf. (2.8)), with (4.2)
we obtain that for all −r < λ ≤ 0,

(4.3) Kλ + |λ|K∗ ⊆ K ⊆ Kλ + |λ|K∗
λ.

Notice that the left inclusion also holds for λ = −r.
At this point we observe that in order to conclude the proof it suffices to show

that

(4.4) clU0(K) = clU0(Kλ) for − r < λ ≤ 0.

Indeed, by (2.3) we get U0(K∗) = clU0(K) = clU0(Kλ) = U0(K∗
λ), and thus

(K∗)∗ = (K∗
λ)∗, i.e., K∗ = K∗

λ. This shows by (4.3) that K = Kλ + |λ|K∗ for
−r < λ ≤ 0, and with Lemma 2.2 we get the validity of the identity K = Kλ+|λ|K∗

for all −r ≤ λ ≤ 0. Then Theorem 2.2 implies that K is a tangential body of
K−r + rE satisfying (1.6). Finally, Proposition 3.2 gives the required result.

So it remains to be proved (4.4) for a convex body K lying in Rn−2. The
inclusion clU0(Kλ) ⊆ clU0(K) always holds for −r < λ ≤ 0 (cf. (2.4)) and we
have to show the reverse inclusion. Thus we assume that there exists a vector u0 ∈
clU0(K)\ clU0(Kλ′) for some λ′ < 0. Observe that this implies that u0 6∈ clU0(Kλ)
for all λ ∈ [−r, λ′]. Since condition (3.1) is satisfied, such a vector u0 6∈ clUn−2(Kλ′),
i.e., u0 is an (n − 1)-extreme vector of Kλ′ which does not lie in the closure of its
(n−2)-extreme vectors. Geometrically it corresponds to the fact that u0 is a normal
vector at a non-regular point of Kλ′ , lying in the interior of the n-th dimensional
normal cone of that point.
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Since u0 ∈ clU0(K), there exists ε > 0 such that u0 ∈ clU0(Kλ) for all λ ∈
(−ε, 0]. Then, since u0 6∈ clU0(Kλ′), there exists

λ0 = max{−r ≤ λ < 0 : u0 6∈ clU0(Kλ)}
satisfying λ′ ≤ λ0 ≤ −ε < 0, and so u0 ∈ clU0(Kλ) for all λ0 < λ ≤ 0. Observe
that if λ0 = −r then (4.4) holds trivially, and so we may assume that λ0 > −r.
Then the support function h(Kλ, u0) = h(K, u0)+λh(E, u0) for all λ0 < λ ≤ 0 (see
[18, Lemma 4.4]). Again, a continuity argument (cf. proof of Lemma 2.2) leads to

(4.5) h(Kλ, u0) = h(K, u0) + λh(E, u0) for all λ0 ≤ λ ≤ 0.

Since (4.1) holds, we can apply Lemma 2.3 ii) to get

(4.6)
d

dλ
h(Kλ, u) = h(K∗

λ, u) for every u ∈ Sn−1,

and taking derivatives (right derivative for λ = λ0) in (4.5) we get that

h(K∗
λ, u0) =

d

dλ
h(Kλ, u0) = h(E, u0)

for all λ0 ≤ λ ≤ 0. In particular, h(K∗
λ0

, u0) = h(E, u0), which implies that u0

cannot lie in the interior of an n-dimensional normal cone at a boundary point of
Kλ0 , but in the boundary of the cone itself, i.e., u0 ∈ clUn−2(Kλ0) = clU0(Kλ0),
which gives the required contradiction. ¤

Corollary 4.1. Every convex body lying in Rn−2 has any of its inner parallel bodies
(in particular its kernel) as a summand.

Proof. Let K ∈ Rn−2. If K ∈ Rn−1 the conclusion is trivial (cf. (1.5)), so we
assume that K ∈ Rn−2\Rn−1.

From Theorem 1.1 it follows that K is a cap-body of K−r+rE satisfying condition
(1.6), or an outer parallel body of such a set. Then by Theorem 2.2 we get that
K = Kλ + |λ|K∗, −r ≤ λ ≤ 0 (eventually plus ρE, for ρ > 0). Therefore Kλ is a
summand of K for any λ ∈ [−r, 0]. ¤

Notice that we can integrate relation (4.6), i.e.,

h(K,u)− h(Kλ0 , u) =
∫ 0

λ0

h(K∗
λ, u) dλ = h

(∫ 0

λ0

K∗
λ dλ, u

)
,

for −r ≤ λ0 ≤ 0 and all u ∈ Sn−1, where the last integral is taken in the Riemann-
Minkowski sense (vectorial integration of functions of one real variable), for which,
in this particular context, we refer to [5]. Thus we get a counterpart of Corollary 4.1,
since K can be written as

K = Kλ0 +
∫ 0

λ0

K∗
λ dλ, for all − r ≤ λ0 ≤ 0.

This shows moreover that∫ 0

λ0

K∗
λ dλ = |λ0|K∗, for all − r ≤ λ0 ≤ 0.

Remark 4.2. How does a convex body K ∈ Rn−2 look like? Of course it is a cap-
body of an outer parallel body of a (strictly) lower dimensional convex body. But
any of these cap-bodies is not valid: the additional points which determine the set
when constructing the convex hull with K−r+rE cannot lie anywhere. For instance,
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if dim K−r = 1, then those points should lie in the (infinite) cylinder containing
K−r + rE with (n − 2)-dimensional spherical cross section rBn−2 (see Figure 3);
otherwise the kernel K−r would not be a summand of K and, moreover, 1-extreme
normal vectors would appear when taking K−r+rK∗, contradicting condition (1.6).
Figure 3 shows a cap-body of K−r+rB3 lying in Rβ ; on the contrary, the one shown
in Figure 2 does not lie in Rβ .

Figure 3. A cap-body of K−r + rB3 lying in Rβ .

A similar reasoning gives an idea of the situation for any dimension of the kernel.
In general, if K−r is not strictly convex in aff K−r, the “allowed” positions for the
points determining the convex hull have many more restrictions, because of the
segments contained in the (relative) boundary of K−r. Figure 4 shows another
example of a convex body lying in Rβ .

5. The inradius and the roots of the Steiner polynomial

This section is devoted to prove Theorem 1.2: we will show that there are ex-
amples violating the inradius property of Conjecture 1.1 when E = B3.

Proof of Theorem 1.2. Let K ∈ K3 be a convex body lying in Rβ\Rγ . Then it is
known (see [14, Corollary 1.1]) that

0 ≤ V(K−λ) <

3∑

i=0

(
3
i

)
Wi(K;B3)(−λ)i = fK,B3(−λ),

for all 0 ≤ λ ≤ r(K; B3), the inequality being strict because K 6∈ Rγ . Therefore,
if ξ is any (positive) real root of fK,B3(−λ) then ξ > r(K; B3), which implies that
−ξ is a root of the Steiner polynomial fK,B3(λ) satisfying that −ξ < −r(K; B3).
Thus if we find a convex body K ∈ Rβ\Rγ such that its Steiner polynomial has 3
real roots, the above argument will show that all those (real) zeros are strictly less
than −r(K; B3), proving the theorem.

Let C ⊂ R3 be the square with edge length 1. It can be checked that the Steiner
polynomial of C, fC,B3(λ) = 2λ

(
1 + πλ + (2π/3)λ2

)
, has three simple real roots.

In [12, Theorem 3] it is proved that the Steiner polynomial of the outer parallel
body of a convex body has the same type of roots (i.e., real or complex, including
multiplicities) as the Steiner polynomial of the original body. Therefore, the Steiner
polynomial of the outer parallel body C1 = C +B3 ∈ Rγ has also three simple real
roots. Next we consider K = conv{C1, p}, where p is a point lying on the affine
hull of any diagonal of the square and close enough to C1 (see Figure 4).

Finally observe that when the roots of a polynomial are considered as functions
of the coefficients of the polynomial, these functions are continuous (see e.g. [16,
p. 3]). On the other hand, in [12, Theorem 1] it is shown that the type of roots
(real or complex, including multiplicities) of a Steiner polynomial is characterized
by relations involving only the coefficients of the polynomial, i.e., the quermassin-
tegrals. Moreover, quermassintegrals are also continuous functionals on K3 (with
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Figure 4. A cap-body of C1 = C + B3.

respect to the Hausdorff metric). Thus, the above three properties show that for p
sufficiently close to C1 the Steiner polynomial fK,B3(λ) will have the same type of
roots as fC1,B3(λ), i.e., three real roots.

It is clear that r(K;B3) = 1, and it is easy to verify that K is a cap-body
of K−1 + B3 satisfying (1.6) for −1 ≤ λ ≤ 0. Then Theorem 1.1 ensures that
K ∈ Rβ , and moreover, K 6∈ Rγ . Thus, we have constructed a convex body
K ∈ Rβ\Rγ satisfying that its Steiner polynomial has three real roots, which
shows the result. ¤

Remark 5.1. The same argument works for an arbitrary odd value of the dimension,
since for any convex body K lying in Rn−2\Rn−1, with n odd, it holds V(K−λ) <∑n

i=0

(
n
i

)
Wi(K; Bn)(−λ)i (see [14, Corollary 1.1]). The construction of the convex

body K ∈ Rn−2\Rn−1 with n real roots is analogous.

We conclude providing a numerical example in dimension n = 3. We use the
same notation as in the proof of Theorem 1.2, and we denote by pα the point
lying on the affine hull of a diagonal of the square, so that α ∈ (π/4, π/2) is the
angle determined by the diagonal containing pα and any supporting line to C1

through pα. It is not difficult to check that the quermassintegrals of the body
K(α) = conv{C1, pα} are given by

V
(
K(α)

)
=

1
3
(
2(3 + 4π) + πg(α)

)
,

W1

(
K(α); B3

)
=

1
3
(
2(1 + 3π) + πg(α)

)
, W2

(
K(α); B3

)
=

π

3
(
4 + g(α)

)
,

where g(α) = (1 + sin2 α)/ sinα (see also [8, pp. 35–37]). Then if for instance
α = π/3, the roots of the Steiner polynomial fK(π/3),B3(λ) are

ξ1 = −1.011659895 . . . , ξ2 = −2.099838756 . . . , ξ3 = −1.404045804 . . . ,

all of them strictly smaller than −r(K; B3) = −1.
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very valuable comments and suggestions.
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